

Welcome to ubuntu-server-setup’s documentation

Note

ubuntu-server-setup [https://github.com/engineervix/ubuntu-server-setup]
is an opinionated bash [https://www.gnu.org/software/bash/] setup script to automate the setup and
provisioning of Ubuntu [https://ubuntu.com/] servers, primarily biased towards
python web applications (Django [https://www.djangoproject.com/],
Flask [https://flask.palletsprojects.com/], etc.).

Why this documentation?

This documentation was written to provide additional context and rationale
behind the engineervix/ubuntu-server-setup [https://github.com/engineervix/ubuntu-server-setup]
project, which was forked from jasonheecs/ubuntu-server-setup [https://github.com/jasonheecs/ubuntu-server-setup].

It is hoped that this will provide a useful reference not only for those
who seek to use the setup script to bootstrap their Ubuntu server, but also
for those that would like to fork the project and adapt it to their specific
needs, just as I did.

Perhaps you like the project and would like to
contribute [https://github.com/engineervix/ubuntu-server-setup/blob/master/CONTRIBUTING.md]
to its improvement – this documentation will hopefully help you get a better
understanding of what’s going on “under the hood”.

Notwithstanding, I also wrote this documentation for my future self,
because many times I forget the very code that I wrote, and even wonder
why and how I wrote it!

Contents

	1. Introduction

	2. Project Features
	2.1. Terminal Enhancements

	2.2. Git Customization

	2.3. Node.js Stack

	2.4. Python Stack

	2.5. Ruby

	2.6. Database Stack

	2.7. Webserver

	2.8. Certbot

	2.9. Text Editor

	2.10. Mail

	2.11. System Administration

	2.12. Additional Server Hardening

	2.13. Additional Packages

	2.14. Miscellaneous Tasks

	3. Project Structure
	3.1. Directories

	3.2. Files

	4. Functions

	5. Roadmap

	6. Contributing
	6.1. Before making a pull request

1. Introduction

You have finished developing your awesome web application – everything works
perfectly on your computer, but you now need to put it out there so that
others can use it and enjoy it. For Python web applications, moving from
development to production can be quite a daunting task, especially given the
fact that there are many options available [https://mattsegal.dev/django-prod-architectures.html].

Well, the “traditional” approach to deploying web applications is to use a
GNU/Linux server in “the cloud”. This entails

	setting up a GNU/Linux server (Digital Ocean [https://www.digitalocean.com/],
Linode [https://www.linode.com/], AWS EC2 [https://aws.amazon.com/ec2/], etc.),
preferably using the latest Ubuntu LTS version.

	Securing your server

	Installing and configuring Nginx [https://www.nginx.com/], PostgreSQL [https://www.postgresql.org/],
uWSGI [https://uwsgi-docs.readthedocs.io/en/latest/]/Gunicorn [https://gunicorn.org/], Redis [https://redis.io/],
Certbot [https://certbot.eff.org/] and any other dependencies

As a developer, you don’t want to spend so much time configuring servers instead
of focusing on building your application. Because setting up servers can be a
tedious task, it is better to automate this process. Again, there are so many approaches
towards automation of infrastructure deployments (e.g. Ansible [https://www.ansible.com/],
Salt [https://saltproject.io/], Chef [https://www.chef.io/],
Puppet [https://puppet.com/], Terraform [https://www.terraform.io/],
Docker [https://docs.docker.com/engine/swarm/], Kubernetes [https://kubernetes.io/], etc.),
these have been evolving over the years, and continue to evolve.

A good old approach is simply writing a bash script to bootstrap your server and
get things up and running quickly. Rather than starting something completely new,
why not check what others have done and see if you could find something to use?
Well, this is what I did, and I stumbled upon
Jason Hee’s awesome setup script [https://github.com/jasonheecs/ubuntu-server-setup].

Jason Hee’s setup script automates the setup and provisioning of Ubuntu servers.
According to the project’s README, it does the following:

	Adds a new user account with sudo access

	Adds a public ssh key for the new user account

	Disables password authentication to the server

	Deny root login to the server

	Setup Uncomplicated Firewall

	Create Swap file based on machine’s installed memory

	Setup the timezone for the server (Default to “Asia/Singapore”)

	Install Network Time Protocol

This provides an excellent starting point for provisioning Ubuntu Servers.
I decided to fork the project and build on top of this strong foundation
to develop a heavily opinionated setup for deploying python web applications.
The idea is to be able to quickly setup a Linux box and deploy a
Python web application without much of a hassle.

In the next section, I will highlight the additional features that I introduced
and the rationale behind them.

2. Project Features

Note

We focus only on the additional features not available in the
upstream version of this fork. The original features are listed
in the Introduction and in the original project’s
README [https://github.com/jasonheecs/ubuntu-server-setup/blob/master/README.md].

2.1. Terminal Enhancements

	ZSH [https://www.zsh.org/] + ohmyzsh [https://ohmyz.sh/] + Powerlevel10k [https://github.com/romkatv/powerlevel10k] = 😎

	includes several cool ZSH plugins, for example:

	zsh-autosuggestions [https://github.com/zsh-users/zsh-autosuggestions]

	zsh-syntax-highlighting [https://github.com/zsh-users/zsh-syntax-highlighting]

	colorized ls output with colour and icons, courtesy of Color LS [https://github.com/athityakumar/colorls]

	fancy Tmux configuration using powerline and Tmux Plugin Manager [https://github.com/tmux-plugins/tpm]

	custom .zshrc configuration, with several useful shell functions

2.2. Git Customization

	minimal global git configuration with user.name, user.email and color.ui

2.3. Node.js Stack

	You cannot build modern web applications without using the Node.js tech stack.
Therefore, the latest LTS version of Node.js is installed, together with Yarn.

	a bunch of useful Node.js global packages:

	
	browser-sync [https://browsersync.io/]

	caniuse-cmd [https://www.npmjs.com/package/caniuse-cmd]

	commitizen [https://github.com/commitizen/cz-cli]

	concurrently [https://www.npmjs.com/package/concurrently]

	doctoc [https://github.com/thlorenz/doctoc]

	html-minifier [https://github.com/kangax/html-minifier]

	grunt-cli [https://gruntjs.com/]

	gulp-cli [https://gulpjs.com/]

	lerna [https://github.com/lerna/lerna]

	lite-server [https://www.npmjs.com/package/lite-server]

	local-cors-proxy [https://github.com/garmeeh/local-cors-proxy]

	
	maildev [http://maildev.github.io/maildev/]

	mdpdf [https://www.npmjs.com/package/mdpdf]

	mozjpeg [https://github.com/mozilla/mozjpeg]

	prettier [https://prettier.io/]

	sass [https://sass-lang.com/]

	semantic-release-cli [https://github.com/semantic-release/cli]

	serve [https://www.npmjs.com/package/serve]

	standard-version [https://github.com/conventional-changelog/standard-version]

	svgo [https://github.com/svg/svgo]

	uglify-js [https://www.npmjs.com/package/uglify-js]

2.4. Python Stack

	Python3 and associated build tools

	virtualenvwrapper

	uwsgi

	celery

	TODO: setup pyenv

2.5. Ruby

Ruby has to be installed because

	Certain applications need it in order for them to be setup, for example,
the Janus Vim distribution [https://github.com/carlhuda/janus]

	there are a couple of Ruby gems that we need (travis cli and colorls)

2.6. Database Stack

	Postgres + PostGIS

2.7. Webserver

	Nginx, with ready-to-use HTTPS, LetsEncrypt + Cloudflare configuration

2.8. Certbot

	ready to use with Cloudflare, via the dns_cloudflare [https://certbot-dns-cloudflare.readthedocs.io/en/stable/] plugin

	automatic renewal and custom post-renewal script

2.9. Text Editor

	Includes Janus [https://github.com/carlhuda/janus] – a Vim Distribution designed to provide minimal working environment using the most popular plugins and the most common mappings.

2.10. Mail

	The server is configured to send emails using Postfix [http://www.postfix.org/] and Sendgrid [https://sendgrid.com/]

	includes the Mutt [http://www.mutt.org/] email Client

2.11. System Administration

	Unattended upgrades and automatic reboots when necessary

	Monitoring of server logs and email notifications using Logwatch [https://help.ubuntu.com/community/Logwatch]

2.12. Additional Server Hardening

	restrict access to the server by specifying who is allowed to login

	secure shared memory

	fail2ban

	lynis

	rkhunter

2.13. Additional Packages

	
	Redis

	Memcached

	TeX-Live

	openjdk-8-jdk

	travis cli

	wkhtmltopdf

	pdftk

	ffmpeg

	youtube-dl

	rclone

	volta

	pngquant

	ocrmypdf

	xvfb

	rdiff-backup

	
	apt-clone

	firefox

	pandoc

	sqlite3

	poppler-utils

	ncdu

	libtool

	dos2unix

	scour

	shellcheck

	jq [https://stedolan.github.io/jq/] and yq [https://kislyuk.github.io/yq/]

	inkscape

	libreoffice-common

	autoconf, automake and autotools-dev

	aspell and hunspell

2.14. Miscellaneous Tasks

	custom scripts and tools (e.g. geckodriver [https://github.com/mozilla/geckodriver]) in $HOME/bin

	custom directories for projects, backups and misc/temp

3. Project Structure

The project structure is as follows:

├── .janus
│ ├── jellygrass.vim
│ ├── vim
│ └── vim-kolor
├── configuration_files
│ ├── apticron.conf
│ ├── nginx
│ │ ├── letsencrypt.conf
│ │ └── ssl.conf
│ ├── origin-pull-ca.pem
│ ├── postfix_main.cf
│ ├── .tmux.conf
│ ├── uwsgi.service
│ ├── .vimrc.after
│ └── .zshrc
├── custom_scripts
│ ├── create_db
│ ├── get_release_notes.py
│ ├── janus_setup.sh
│ ├── release.py
│ └── shrinkpdf
├── docs
│ ├── build
│ ├── make.bat
│ ├── Makefile
│ ├── requirements.in
│ ├── requirements.txt
│ └── source
│ ├── 01_introduction.rst
│ ├── 02_features.rst
│ ├── 03_structure.rst
│ ├── 04_functions.rst
│ ├── 05_roadmap.rst
│ ├── 06_contributing.rst
│ ├── conf.py
│ ├── index.rst
│ ├── _static
│ └── _templates
├── tests
│ ├── lib
│ ├── results
│ │ └── .gitkeep
│ ├── tests.sh
│ ├── unit-tests.sh
│ └── Vagrant
│ ├── Vagrantfile.bionic64
│ ├── Vagrantfile.focal64
│ ├── Vagrantfile.trusty32
│ ├── Vagrantfile.trusty64
│ ├── Vagrantfile.xenial32
│ └── Vagrantfile.xenial64
├── .all-contributorsrc
├── .gitattributes
├── .gitignore
├── .gitmodules
├── .readthedocs.yaml
├── .travis.yml
├── .versionrc
├── CHANGELOG.md
├── CONTRIBUTING.md
├── LICENSE
├── package.json
├── package-lock.json
├── README.md
├── setup.sh
└──setupLibrary.sh

3.1. Directories

	.janus
	This directory contains custom janus configuration files. It
gets copied into the $HOME directory

	configuration_files
	Cloudflare, Vim, TMUX, Nginx, uwsgi, Postfix, apticron, .zshrc

	custom_scripts
	shrinkpdf and create_db are copied to $HOME/bin. janus_setup.sh
is used during installing, while get_release_notes.py and release.py are
used during development of this project to automate releases.

	docs
	Sphinx [https://www.sphinx-doc.org/en/master/], documentation for the project.
This is what you are currently reading!

	tests
	Project test suite. Tests are run against a set of Vagrant VMs.

3.2. Files

Note

We’ll not go through each and every file here, the assumption is that certain files
are pretty obvious, for example, the git-related files such as .gitignore and
.gitattributes, CI files like .travis.yml, etc.

	.all-contributorsrc
	This project uses the all-contributors [https://allcontributors.org/] specification.
The data used to generate the contributors list is stored in here.

	.readthedocs.yaml
	The project documentation is hosted on Read the Docs [https://readthedocs.org/].
The configuration for the documentation builds is defined in here.

	.versionrc
	This project uses standard-version [https://github.com/conventional-changelog/standard-version].
for versioning using semver [https://semver.org/] and CHANGELOG generation powered by
Conventional Commits [https://conventionalcommits.org/].
The standard-version configuration is defined in here, based on the
conventional-changelog-config-spec [https://github.com/conventional-changelog/conventional-changelog-config-spec/].

	CONTRIBUTING.md
	Guidelines on how to contribute to this project.

	setup.sh
	This is the core of this project. This is the script that we actually run when setting
up a new Ubuntu server. If you want to add additional features, you’ll probably wanna
edit this file. For details of the additional functions that constitute the basis for this fork, see Functions.

	setupLibrary.sh
	Contains the initial setup functions plus a couple of helper functions that are “imported” in setup.sh above

4. Functions

Note

We focus only on the additional functions not available in the
upstream version of this fork.

You may find this section particularly useful if you would like to
customize the existing features or add other features of your own.

In setup.sh, where these functions live, there’s also a main() function
which, as the name implies, is the main function. All these functions are called
inside this main() function. If you write your own function, you’ll wanna find
somewhere within the main() function to call it.

	extraHardening
	Here we restrict access to the server and secure shared memory

	setupHostname
	At the time of developing this script, I was dealing primarily with AWS EC2 deployments,
where you have to update the hostname and the /etc/hosts file, plus made some changes
to the /etc/cloud/cloud.cfg. I realized that this was not required for other cloud service
providers (e.g. Digital Ocean droplets and Hetzner Cloud servers).
Therefore, by default, the call to this function is commented out in the main() function.
You might wanna uncomment if deploying on AWS.

	setupNodeYarn
	Install Node.js, yarn and some important global node packages

	setupGit
	Global git configuration involving setting up of user.name, user.email and color.ui true

	setupZSH
	Here we install and configure zsh [https://www.zsh.org/], Oh My Zsh [https://ohmyz.sh/] and
the powerlevel10k [https://github.com/romkatv/powerlevel10k] theme.

	setupRuby
	Simple ruby setup. Ruby is needed for the Janus Vim distribution [https://github.com/carlhuda/janus],
colorls [https://github.com/athityakumar/colorls] and the
Travis CI Client [https://github.com/travis-ci/travis.rb], among others.

	setupTmux
	Tmux comes already installed with Ubuntu, and so there’s no need to install it.
Here we just install the Tmux Plugin Manager [https://github.com/tmux-plugins/tpm]
and add some configurations and styling (using Powerline [https://packages.ubuntu.com/focal/powerline])

	setupPythonDev
	First and foremost, we install python, pip and related dev / build tools.
Then, we install and configure virtualenvwrapper and uWSGI. Lastly, but not the least,
we prepare the server for Celery [https://docs.celeryproject.org/],
based on this blog post [https://importthis.tech/djangocelery-from-development-to-production].

	setupVim
	Install and configure Vim & related plugins, courtesy of the Janus Vim Distribution [https://github.com/carlhuda/janus].

	setupDatabases
	Install and configure PostgreSQL, PostGIS, Redis and Memcached.

	setupWebServer
	Install and configure Nginx and Certbot (plus the certbot-dns-cloudflare plugin).
This includes adding a cron job whith a Let’s Encrypt renewal hook. Also generate
a strong set of 4096 bit DH (Diffie-Hellman) parameters using openSSL.

	setupMail
	Install and configure Postfix and related mail utilities. The setup assumes you’re
using Sendgrid [https://sendgrid.com/]’s SMTP server/relay, but this can easily be customized to use
other providers such as Mailjet [https://www.mailjet.com/], for instance.

	configureSystemUpdatesAndLogs
	Updates notification, unattended upgrades, logs and other necessary System Administration stuff.

	furtherHardening
	Install and configure fail2ban, lynis [https://cisofy.com/lynis/] and
rkhunter [https://packages.ubuntu.com/source/focal/rkhunter].

	miscellaneousTasks
	Setup some folders for common operations, copy the custom scripts to the ~/bin directory
and install geckodriver [https://github.com/mozilla/geckodriver/releases]
(for use with selenium [https://selenium-python.readthedocs.io/]).

	installExtraPackages
	Here we install a bunch of other packages that I find to be very useful. See Additional Packages
for the details of these extra packages. Note that the list includes texlive-full, which may take
a while to download and install. So if you’re in a hurry and don’t really need a
full TeX distribution, then perhaps you might wanna comment it out.

5. Roadmap

The upstream version of this setup script has been tested against Ubuntu 14.04, Ubuntu 16.04, Ubuntu 18.04 and Ubuntu 20.04.
However, this fork primarily targets Ubuntu 20.04, and has only been tested on:

	official AWS Ubuntu 20.04 AMIs (Amazon EC2 Instances)

	Ubuntu 20.04 droplets on DigitalOcean

	Ubuntu 20.04 cloud servers on Hetzner

As the author, naturally, I will focus only on select cloud providers of interest, as I do not have the time to test
on all the various platforms. If you have used this script on Azure, or GCP or vultr, Linode, etc, please share some
feedback so that we know how things went!

For now, the focus is on

	fixing bugs whenever they are spotted

	adding minor features where necessary, with a focus on having a robust and secure server

	seeking to find ways to speed up the setup by minimizing manual input

In the TODO section of the README on GitHub [https://github.com/engineervix/ubuntu-server-setup#todo], you’ll probably find a concrete list of things that need to be done. If you find this project useful, please help improve it by contributing your code!

The bottomline

The idea is to ensure that the script always works on the latest Ubuntu LTS release.

6. Contributing

Contributions of any kind welcome! 🎉

When contributing to
ubuntu-server-setup [https://github.com/engineervix/ubuntu-server-setup],
please first create an
issue [https://github.com/engineervix/ubuntu-server-setup/issues] to
discuss the change you wish to make before making a change.

6.1. Before making a pull request

Note

This repo uses some Node.js-based tools
(commitizen [https://github.com/commitizen/cz-cli] and
standard-version [https://github.com/conventional-changelog/standard-version])
as part of the dev workflow. So, before you proceed, you’ll need to
ensure that Node.js [https://nodejs.org] is installed on your
machine, and you are able to use npm to install Node.js packages

	First, install the
Commitizen [https://github.com/commitizen/cz-cli] cli tool if you
don’t already have it on your system:
sudo npm install commitizen -g

	Fork the
repository [https://github.com/engineervix/ubuntu-server-setup].

	Clone the repository from your GitHub.

	Run npm install to install local Node.js packages

	Update .git/hooks/prepare-commit-msg with the following code:

#!/bin/bash
exec < /dev/tty && node_modules/.bin/cz --hook || true

	Check out a new branch and add your modification.

	Run shellcheck [https://www.shellcheck.net/]:
npm run shellcheck and ensure that it completes with an
exit 0 status. If your changes have introduced some warnings,
please try and address them. If you have good reason to ignore some
of them, then mention this in the “longer description” portion of
your commit.

	Update README.md for your changes.

	Commit your changes via git commit, following the prompts to
appropriately categorize your commit.

	Send a pull
request [https://github.com/engineervix/ubuntu-server-setup/pulls]
🙏

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to ubuntu-server-setup’s documentation

 		
 Introduction

 		
 Project Features

 		
 Terminal Enhancements

 		
 Git Customization

 		
 Node.js Stack

 		
 Python Stack

 		
 Ruby

 		
 Database Stack

 		
 Webserver

 		
 Certbot

 		
 Text Editor

 		
 Mail

 		
 System Administration

 		
 Additional Server Hardening

 		
 Additional Packages

 		
 Miscellaneous Tasks

 		
 Project Structure

 		
 Directories

 		
 Files

 		
 Functions

 		
 Roadmap

 		
 Contributing

 		
 Before making a pull request

_static/plus.png

_static/file.png

_static/minus.png

